Skip to main content

Electroplating











Electroplating is the process of plating one metal onto another by hydrolysis. Electroplating is mainly done for protection (specially against corrosion) and for decorative purposes. 

How does electroplating work?














As shown in the diagram the victim electrode or the donor is the anode. So, for the anode we select an element which can donate ions that are necessary for electroplating. 

As shown above, the battery pulls  regular streams of electrons over from the anode and supplies them to the cathode.

The cell is filled with a solution of a salt of the metal to be plated and an aqueous solution of salt slightly acidic in nature is used for this purpose.

In this experiment, NiCl2 ionizes in the water into Ni++ ions and two parts of Cl- ions.

At the cathode - 

Because the object being plated is negatively charged, it attracts Ni++ ions in the solution. Thus all the Ni++ ions migrate and get attracted to the cathode.

Due to the electrons that the cathode receives from the anode, electrons convert these Ni++ ions into Ni metal.

Ni++ + 2e → Ni

Furthermore we can conclude that the amount of metal that gets accumulated at the cathode (the object being electroplated) is directly proportional to the number of electrons that the battery provides.

At the anode-

At the anode, electrons are removed from the metal and oxidized into the Ni++ state.

Ni → Ni++ + 2e

Thus, it should be clear that the Ni metal rod dissolves providing Ni++ to the solution.













These Ni++ ions now migrate towards the cathode and the electrons also move towards the cathode  as described earlier.

Thus, the Ni rod dissolves and the cathode gains mass (Ni). The solution becomes concentrated with Ni++ ions or NiCl2 solution.


Comments

Popular posts from this blog

Action of a transistor

In this note I will present details only about the npn transistor. For those who are interested only on the pnp transistor, you can switch the action of the npn transistor and the behavior of current to adjust with the characteristics of the pnp transistor. (Photo credit: mahasona10000.blogspot.com ) As in the case of a p-n junction,the two n parts of the npn transistor contain an excess of free electrons. In contrast, the p part contains excess holes. As in the case of the p-n junction, in the npn transistor depletion regions develop and junction barriers occur. (Photo credit: daenotes.com) For the correct functioning of the transistor, the first p-n junction is forward biased and the second p-n junction is reverse biased. This results for the first p-n junction to be of low resistance and the second p-n junction to be of high resistance. (Photo credit: www.nzart.org.nz ) The letters of these elements

Gold leaf electroscope

What is a gold leaf electroscope? Gold leaf electroscope is an instrument for detecting and measuring static electricity or voltage. The following diagram shows a modern gold leaf electroscope: Why is gold used to make such an electroscope? Gold is popularly used to make such electroscopes since gold is even sensitive to very minute charges (This is achieved by the malleability of gold - hammering into sheet form and making the mass thin). When we introduce a charged object to the disk of the electroscope ( explained below) we practically do not know the magnitude of the charge. Thus a simple conductor may not be the best option to show a reasonable deflection or response even to minute charges. Thus gold is assumed to be sensitive to charges of any magnitude which makes it more suitable as the indicator.  Besides gold is also a non corrosive metal. We practically do not use anhydrous materials inside the glass case. The penetration of

The Silver Mirror Test

What is the Silver Mirror Test? Silver Mirror Test is a test that is used to differentiate between aldose and ketose sugars using the Tollen's reagent. Tollen's reagent is an alkaline solution of ammoniacal silver nitrate and is used to test for aldehydes. *Ketones do not react with the Tollen's reagent. Silver ions in the presence of hydroxide ions form a brown precipitate of silver (I) oxide, Ag 2 O (s) . Ag 2 O This precipitate dissolves in aqueous ammonia, forming the diamminesilver(I) ion, [Ag(NH 3 ) 2 ] + . The reactions that take place in this experiment are as follows: 2Ag + (aq)  + 2OH - (aq)   →   Ag 2 O (s)  + H 2 O (l) Ag 2 O (s)  + 4NH 3 (aq)  + H 2 O (l)   →  2[Ag(NH 3 ) 2 ] + (aq)  + 2OH - (aq) What happens if Silver Nitrate is used without ammonia or why is ammonia used in this experiment? When ammonia is added to the silver nitrate solution, silver ions are less prone to reduction. Thus, silver is produce

Electromagnetic Induction

What is electromagnetic induction? When an alternative current is allowed to flow through a certain circuit and that circuit is kept near a neutral circuit, the former circuit induces charge distributions in the latter circuit resulting in an induced current in the latter circuit. This phenomenon is called the electromagnetic induction. Thus a potential difference arises across the circuit when exposed to a varying magnetic field. Faraday's law- Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be "induced" in the coil.  (Photo credit: gic-edu.com) Thus, fluctuating magnetic fields cause currents to flow in conductors placed within them. This is called induction because there is no physical connection between the conductor and the magnet. The current is said to be induced in the conductor by the magnetic field. In order to produce the maximum force needed for induction, usually the cond

Flame test- By Aditya Abeysinghe

Introduction: Flame test is an experiment used to identify/distinguish metals using colors exposed to a flame.  Since metallic halides easily evaporate, the test is usually done using the halide components of metals. Out of the halides, chlorides are frequently used because chlorides give a fast change of color when exposed to the flame as opposed to other halides. Materials needed:       ·           A rod of platinum, nichrome, asbestos or graphite      ·          Concentrated HCl solution      ·          Bunsen burner      ·          Metallic salt (a chloride of a metal)      ·          A cobalt glass (if necessary) Method: Insert the rod of platinum, nichrome, asbestos or graphite into a concentrated solution of HCl. Hold the rod to a Bunsen flame. (to the  colorless region) Continue this experiment until the top region of the flame turns colorless. Form a pulp by mixing the metallic salt with the concentrated HCl solution and apply